Supersolvable Frame-matroid and Graphic-lift Lattices

نویسنده

  • Thomas Zaslavsky
چکیده

A geometric lattice is a frame if its matroid, possibly after enlargement, has a basis such that every atom lies under a join of at most two basis elements. Examples include all subsets of a classical root system. Using the fact that nitary frame matroids are the bias matroids of biased graphs, we characterize modular coatoms in frames of nite rank and we describe explicitly the frames that are supersolvable. We apply the characterizations to three kinds of example: one generalizes the root system D n and near-Dowling lattices ; one has for characteristic polynomials the enumerators of separated circular partial permutations; and one is the family of bicircular matroids. A geometric lattice is a graphic lift if it can be extended to contain an atom whose upper interval is graphic. We characterize modular coatoms in and supersolvability of graphic lifts of nite rank and we examine families analogous to the frame examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How is a chordal graph like a supersolvable binary matroid?

Let G be a finite simple graph. From the pioneering work of R. P. Stanley it is known that the cycle matroid of G is supersolvable if and only if G is chordal. The chordal binary matroids are not in general supersolvable. Nevertheless we prove that every supersolvable binary matroid determines canonically a chordal graph.

متن کامل

Binary Supersolvable Matroids and Modular Constructions

Let Jt be the class of binary matroids without a Fano plane as a submatroid. We show that every supersolvable matroid in JÍ is graphic, corresponding to a chordal graph. Then we characterize the case that the modular join of two matroids is supersolvable. This is used to study modular flats and modular joins of binary supersolvable matroids. We decompose supersolvable matroids in JH as modular ...

متن کامل

Extending a matroid by a cocircuit

Our main result describes how to extend a matroid so that its ground set is a modular hyperplane of the larger matroid. This result yields a new way to view Dowling lattices and new results about line-closed geometries. We complement these topics by showing that line-closure gives simple geometric proofs of the (mostly known) basic results about Dowling lattices. We pursue the topic of line-clo...

متن کامل

Quasi-graphic matroids

Frame matroids and lifted-graphic matroids are two interesting generalizations of graphic matroids. Here we introduce a new generalization, quasi-graphic matroids, that unifies these two existing classes. Unlike frame matroids and lifted-graphic matroids, it is easy to certify that a matroid is quasi-graphic. The main result of the paper is that every 3-connected representable quasi-graphic mat...

متن کامل

Single Commodity-Flow Algorithms for Lifts of Graphic and Co-graphic Matroids

Consider a binary matroid M given by its matrix representation. We show that if M is a lift of a graphic or a cographic matroid, then in polynomial time we can either solve the single commodity flow problem for M or find an obstruction for which the Max-Flow MinCut relation does not hold. The key tool is an algorithmic version of Lehman’s Theorem for the set covering polyhedron.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2001